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The three-dimensional problem of coupled thermoelasticity for a sphere is considered taking into account the finite rate of 
heat propagation. Solutions for the temperature and stress in a sphere heated by two dome-shaped energy fluxes are found 
by the ray method. Graphs for the temperatures and radial stresses are presented. © 1999 Elsevier Science Ltd. All rights 
reserved. 

Most of the solutions of dynamic problems of thermoelasticity relate to bodies of infinite or semi-infinite 
dimension [1, 2]. 

1. The dynamic problem of coupled thermoelasticity is described by the equations of motion [2], the 
generalized heat conduction law [3], the law of conservation of energy, Duhamel-Neumann relations 
and Cauchy's relations [2]. After eliminating the strain tensor and transforming the equations, the system 
can be written in the dimensionless form [4] 

171ij,j ~'i/ i, t, T, qi, t "t" qi = - T  i, qi.i "F ~U k,k + Tt  = O 

(~ij,t ----((1- 2rl)v k, ~ - T,t )Sij + ~(v i, j ..l.ll j, i ) (1.1) 

where crij are the components of the stress tensor, D i are the components of the vector of displacement 
rates, qi are the components of the heat flux vector, T is the temperature, x is the relaxation time of 
the heat flux, 6 is the thermomechanical coupling coefficient, t is the time, 11 = kt/(Z, + 2~t), ~ and tx are 
the Lain6 parameters and 6ij is the Kronecker delta. 

Suppose that there are no stresses on the boundary of a sphere of radius r0 and that two dome-shaped 
energy fluxes operate. 

The boundary conditions are 

qi(O, tp, tO, t )V i = go (t)  exp ( -dro  2 sin2 0) 

aij (0, ~, r 0, t)vj = 0 (1.2) 

Here  r, 0, cp are spherical coordinates, d is a constant and vi are the components of the unit normal to 
the surface. 

2. The solution for the stresses, temperature, displacement rates and heat fluxes will be sought in 
the form of the radial series 

12 (2)+ 
f = ( f+ _ i f ] )  iz _h(f,(n l)+ _ [f(I)]) 1~ + 2! (f.nn -- [f,~2)]) 'Z --... (2.1) 

f,(~) = ~kf 
n . , J I  ~xi~xj...3xt viv/...vt, [f]  = (f+ - f - )  I x 

Here h is the distance along the normal to the front of the surface of strong discontinuity. The superscript 
plus denotes the value of the function ahead of the wave front of the discontinuity and the superscript 
minus denotes the value behind it. 
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In a thermoelastic material we know [5] that two fronts of vortex-free waves (VFW) propagate with 
velocities 

c N = ( l + x + x S + 4 ( l + x + x S )  2 -4x)/(2x),  N = l , 2  

and one front of an equivoluminous wave (EW) propagates with velocity c3 = ~/rl. The equations for 
the zero terms of the series (there will be no summation over N and M below) 

~0  N/St+bN(O N = C ND~O N, ~l~ i ] l St = C3D.[U i ] 

f.O N = [11 i]Yi II;N, b N = 5/(2['t~ + (1 - "tc~)2]) 

Here 8/6t is the f-derivative with respect to time [6]. 
On the VFW front the discontinuities of the physical parameters have the form 

[ qi ] = --~O N V i /(1 -'~C2), [T] = -~,Y[C NO~ N/(1 -XC2n) 

--CN[(Iij ] = (C 2 -- 2q)fDN~ij + 2rl(0NViV j, [U/] = C0NV i 

On the EW front 

(2.2) 

(2.3) 

[qi]=0, [T]=0, [oi]v i = 0  

-c3 [ffij ] = ~([o i ]v) + [v j ]vi) (2.4) 

For boundary-value problem (1.1), (1.2), the surfaces of discontinuity Y.(t) are spherical waves which 
propagate towards the centre of the sphere. The curvilinear coordinates on the moving surface are taken 
asyl = O, yz = q~ (0 ~< 0 ~< n, 0 ~< q~ <~ 2n). The Cartesian coordinatesxi of the moving surface and the 
components of the unit normal to the surface vi have the form 

x I = (r 0 - ct)sin 0cos~p, x 2 = (r 0 - ct)sin0sinq~, x 3 = (r 0 - ct)cos~p 

v I =-sin0eosqp, v 2 =-sin0sin(p, v 3 =-cos~0 

The components of the fundamental contravariant metric tensor g ~  on the surface, the coefficients 
of the second and third basic quadratic forms b,~13, c,~, the average and Gaussian curvatures f~ and K 
have the form [7] 

V0 
Ksin_2 , b~  = f l  -I sin- 2 

~0 O O~ " = ( r o - c t ) - ' ,  K = ( r o - c t )  -2 c ~  = sin2 

For spherical waves, solutions (2.2) have the form 

00N = C00N(Yl,Y2)r0 exp(-bNt) I( r o - C Nt ) 

[Vii =rio (Yl ,Y2)ro I(ro - c N t )  
(2.5) 

The radial series (2.1) can be represented in the form 

f (r ,O, cp, t ) = -  ~ ( r - r °  -q t )k  [¢ (k) ]It 1 - 

k=o k! ~J,n.,.n 

_ ~ ( r -  r 0 - c2t) k re(k) ]l ~ ( r -  r O - c3t) k [eft) ] 
k--o k! s,,.... ~-~=o k! J'"" I~3 (2.6) 

The partial derivatives of the function f are related to the derivatives in curvilinear coordinates by 
kinematic and geometric consistency conditions of the (m + 1)th order [6, 8] 
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f(m+l) (re+l) o~ (m) ~.~,...~ , = [Y.u  ]v~ +g  [y.~...,l.~x~.l~ + t~'-'[f]x~.~ 

# m + l ) l - -  ~.[te(m+l)l.l.~f¢(m) IlR~ ~ rm(m-I)l 
~otn...n ~----~ts,n...m J - - " t J , n . . . n ~ ' " + m g  C~tJ,n...n La + 

m ~,.,m_R+l 1~ ¢t 1[$ DcxRr¢(ra_R) 1 
+ ~ ~m a ~  ~',p°ctl tJ,n...n J,al¢ 

R=2 
(2.7) 

m+l cm_R+I{R l~ !~al~rt(m-R+l)l  ctfl 

R=2 

R b ~s~N 
N=2 

We differentiate system (1 .1 )  m times with respect to the normal n and record at discontinuities. 
r (m+l)~ Using the kinematic and geometric consistency conditions (2.7), eliminating discontinuities lOi:~..~ l, 

(m+l re+l) [q~..,)], [~...~ ] and taking into account that the velocities of VFW and EW take constant values, we 
obtain 

( ~ C  2 -- (1 Vl)(1 - Zc 2))Iv ~mn+~lvtv i + (c  2 Q)(I - Zc 2)Iv (re+D1 = 

= -xc2 (g~[q~!..,,  ],cL x,,~vi +/~m-X)[qk ]xk,~vi) - 

5 x c 2 ' - ' ~ l u  ( ' )  ] x - v  +L~m-~)[v~]xk,pV~)-  -- ~ ~ k,n...n ,et k,I$ i 

- ~ v  ,~: . . . ) , l  / at - "ccv ~ v ,~q~7~..~ ]/ ~t - 

. (ra) ] V V  + ( 1  2 ~ (m) -ctqk,, . . . ,  k i - x c  ) ( - c (g  [aU,,...,]~xj. ~ + 

( m - I )  (m) (m) (m) 
+ I ~  [Cllj]Xj, p)+CS[Oi,n.. .n]l~)t-VjS[ffij ,n. . .n]l~)t--ViS[Tn.. .n]lSt+ 

+0 - 2~)(g ~ [v  ~!..~ ].~xk.~ v ~ + t~c"-~) Iv k ]x,.~v, ) + 

+n(g~[~ ~.~!.., 1,~ ~,,~v~ + t~" -'to ~ )~,.~v~)) (2.8) 

Putting c = c3 in the tensor equation (2.8), multiplying by vi and summing over i we obtain 

(8~c3 2 - (1 - ~)(1 . . .2)x~.  (,,+~)~,, 

2 ~ (,,) +/.~,,,-~)[q~]xk,t~)_ = -'fC 3 (g [qt,n...n],~Xt,[I 

2 c~8 (m) -8zc3 (g [u k.,,...,,].~x~,.~ + L~'~-~)[u~]x~.~)- 

2 (m) (m) 
-'¢C 3 ~[T,,n... n ] / ~t - "~C3V t~qt,n...n ] I ~t - C 3 [ql, m n)...n ]V~ + 

2 ap (m) 
"1-'(1 - 'gc 3 ) ( -c3(g  [(lij,n...n],aXj, p + 

+qm- , (%~j .pv , )+  ~v~8[~,~T!,]/St- 

- v  v,~o,~7~ ~] / ~t - ~'?>,,  ]/~t + 
J • . . .  . . . .  

+(1- 2n)(go~tv ~,~)...,,].,:k.p + L~"-t)[ v ~]xk.~)) (2.9) 

Multiplying Eq. (2.8) by vi, summing over i and putting c = CN, we obtain a differential equation for 
the change of cof~ ) = [o~  )...~ ]vi I EN on the VFW front 

&o tin) I f)t + b n o ~  ) - c Nf~O(n~ ) = w(m-X) (~O n ) (2.10) nN 

Here 14Xm-~)(~on) is a function of the derivatives along the normal ~ON of order rn - 1 and below. 
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Substituting (2.9) into system (2.8) with c = ca, we obtain a system of differential equations for the 
components of  the vector [t)~!~ ] on the EW front 

~ u  (i.~.).., ] / 8 t  - c,D.[u ~m.!., ] = w(m- , )  (2.11) 

The expression on the right-hand side does not contain [o(. m) ] 
• ! . . . n  " 

If m = 1, we obtam a first-order differential equation ~rom (2.10) and (2.11) from which to find 
t~(2)/(, = [o~.l)jv / and [o~ )] 

Here  

= atct°°~r° exp(-bNt) I(r° - ctct) - (2.12) 

-Frc3_#ro exp(-bNt) I( r o - c t~t ) 3 

810 ~ ]18t = c3[o ~'2]/(r0 - c Nt ) 

F T = dro2(l +2dro 2 sin 2 0cos 2 0 -  2 cos 2 0 ) -  2 

On the V F W  front we have 

( t )  _ 2 - 2  2 ( l )  [T, ] - x ( 1 - x c  N) { -xc~v(1-Xc~) t~+  

+(I - x/,~ (I + ~c~))coN + xcN(l - ~c~)t'aoN } 

_ - ~C N) tOnNvi  + 

+ct¢ (1 - 2'Cbiv)tONVl - (1 - Zc2u)g~atO~c,axi.p} 

- c ~ l [ ~ ) , n ]  = { (c~v2 _ 2g)COn N(,) +blcc~l(cZ + 2g)O)iV _ 

-(c2N - 2~t~co#}8~j + 2~t(co~ - b#c?~tco# + ~coN)v~v~ 

-~tgaPg ° V b ~ t o #  (Xi.l~Xj. ¥ + Xj,l~Xi.y ) + 2~tg~totc,a (xi, pv j  + x j . l l v i )  

[,., ~ ]  = ,.,('), , W n N ' i  + gtXlifON,ctXi, p 

On the EW front 

(2.13) 

[Tt~)]=0, [q~:n)] =0,  [v~l)n]vk =--g~[ok].aXk, p (2.14) 

] = + . ( [ , . , , ] . , j  +[.,  j ] . , , ) a  + 

+l.tg"P ([v ~],,~ xj,p +[u j],,~x~.p) 

The solution of the differential equations of system (2.12) has the form 

oo) = [to~jvr 0 I( ro - c jvt ) + ( a rctOotcr o I( ro - c lvt ) - Frr  o I( ro - c tct) z ) ] exp(-bjvt) nN (2.15) 
[V~] =V inor 0 I( r 0 - c3t ) 

3. Relations (2.3)-(2.6) and (2.13)-(2.15) can be used to construct the stress tensor, temperature, 
heat flux vector and displacement rates. Using (2.3)-(2.5), we substitute ray series (2,6) for the heat 
flux and stress tensor into (1.2) and let t = 0, r = ro. Adding the condition on the EW [o~]vk --- 0, we 
obtain a system of five equations 

&~01/(1 - x c 2 ) +  &oo2 /(1 - xc 2) = go(O)exp(-dro 2 sin 2 0) (3.1) 

(C1£001 "4" C2£002)V i + C3Pi0 = 0, Oi0Vi ---- 0 (3.2) 

Note that condition (3.2) holds on any sufficiently smooth surface which is load-free. It follows from 
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the solution of (3.2) that uio = 0. Thus ([v] = 0) we have shown that an EW is an acceleration wave 
in the case of a free boundary (oiivi = 0). It follows from the solution of system (3.1), (3.2) that 

w,,N = Fn exp(-d4 sin’ 0) 
(3.3) 

FN =c~(~-~c~)(~-Tc~)~~(O)/(~(~~(~-~C~)-CN(~-TC~))) 

M=3-N 

Using relations (2.3)-(2.5) and (2.13)-(2.15) we substitute the radial series (2.6) for the heat flux 
and stress tensor into boundary conditions (1.2). We differentiate the resulting equations with respect 
to time t and put r = 0, r = rY Adding the condition on the EW [$‘,I = -gap[~k],~k, p, we obtain a 
system of five equations for 0 ,‘b, ~$1, The solution of this system is . 

ozdN = Ft] exp(-dro sin2 0) 

v!‘) 1 
1llN =T(SOV, + ~(-C~~!Vi +2C~roFNdsin28.Xi,l) lzN(o)) 

c3 N=l 

Here 

F$ = (Q,,cM(l - zc;) - s,s)(l - TC;> x 

X(~N(C~(~-TC~)-C~(~-ZC~))- 

Differentiating boundary conditions (1.2) 112 times with respect to time t and putting t = 0. r = r-0, we 
can determine the subsequent coefficients of the series o$$, o$$. 

The solutions are illustrated in Fig. 1, which shows graphs of the variation of the radial stresses o, 
and the temperature T against the time t for tied depths r = 0.95 (the dashed curve) and r = 0.85 
(the solid curve). The chosen material was aluminium 6 = 0.028, r = 4.18, IJ = 1.94, the unit of 
dimensionless time is 2.39 Ps, the unit of dimensionless temperature is 300°C and the unit of 
dimensionless stress is 1.41 x lo9 Pa) the sphere radius r. = 1, go(t) = 1. The radial stresses and 

0 

*rr 

-I 

Fig. 1. Fig. 2. Fig. 3. 
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temperature experience a jump when the first front of the thermoelastic wave arrives. The compressive 
stresses and temperature increase until the second front arrives. This is because of the importance of 
the geometric factor in the problem for a sphere. Reducing the area of the surface which moves towards 
the sphere centre has a greater effect than unloading the material, as observed in the problem for a 
half-space [3]. The second front makes a major contribution to the change in temperature. The first 
front of the thermoelastic wave has an insignificant effect on the change in temperature and can be 
neglected, since the jump of the first temperature front is no more than 2% of that of the second. 

Figure 2 shows the dependence of the radial stresses ar~ on time t at r = 0.85 for values of the angle 
0 = 0, 0 = ~/4, 0 = n/2. It follows from the first boundary condition (1.2) that the heat flux on the 
boundary of the sphere decreases as 0 increases from zero to ~/2. The graphs show that the largest 
jump of the leading front of radial stress (t = 0.147) is observed when 0 = 0, and the smallest when 0 
= re/2. Subsequently the compressive stresses increase with time until the second front arrives (t = 0.312). 
The second front causes a sudden decrease in the compressive radial stresses for 0 = 0 and 0 = n/2 
(unloading of the material) and an increase for 0 = re/4 (loading of the material). The calculations show 
that the EW front arrives when t = 0.298 and has only a slight influence on the change of radial stress. 

Figure 3 shows graphs of the discontinuities of the VFW of radial stresses ar~ against the angle 0 
with r = 0.85. The leading front of the VFW (the lower curve), which moves with velocity cl = 1.018, 
in a monotone function. The thermal load which operates on the sphere boundary r0 = 1 is a decisive 
factor in the formation of this front. The heat flux, which decreases as 0 increases, gives rise to a smaller 
compressive radial stress ar~. The jump of the second VFW front (the upper curve), moving with velocity 
c2 = 0.480, decreases in the segment [0, n/4] and increases in the segment In/4, ~/2]. Positive values of 
the radial stress ar~ result in unloading and negative values result in loading of the material. Loading 
of the material is clearly observed near the angle z/4. 

These solutions apply to a thermoelastic body and can be used when designing the spherical mirrors 
of resonators of lasers subjected to the action of brief high-intensity heat fluxes. 
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